Archive for: June, 2015

Percentages of Faculty Salary Support at Academic Medical Centers

Jun 17 2015 Published by under Uncategorized

There has been much discussion of the percentages of faculty salaries coming from internal versus external sources. In the context of helping prepare a recent paper from leaders of academic medical centers, I was able to obtain some data from the AAMC (American Association of Medical Colleges) regarding the distribution of levels of extramural support across 72 academic medical centers for 2013. These data are shown below:

STL Figure

 

These data were collected under terms of strict anonymity for institutions. Furthermore, as noted in the caption, they were collected by obtaining the total amount of extramural support going to faculty salaries and dividing by the total amount going to salaries for individuals with at least some extramural support. Thus, distributions of levels of support across a given institution are not available. Nonetheless, these distributions provide some sense of the range of individual institutional behavior that is more informative than an overall median with no other information.

26 responses so far

IC Distributions for R01s from PIs with Multiple R01s

Jun 08 2015 Published by under Uncategorized

In my previous post, I examined the fraction of NIH PIs who had either a single R01 (or R37 Merit Award) or multiple R01s for fiscal year 2014. Overall, about 30% of R01 PIs had more than 1 R01. In the comments and on Twitter, the issue came up about whether those with multiple R01s had them from the same IC or from multiple institutes.

To address this question, I asked the question: If an PI had an R01 from one institute, what is the distribution of ICs for the additional R01s going to the same PI. The results are tabulated below:

IC_pairings_results

NIH Abbreviation Key:  AA=NIAAA, AG =NIA, AI = NIAID, AR = NIAMS, AT=NCCAM, CA=NCI, DA=NIDA, DC=NIDCD, DE=NIDCR, DK=NIDDK, EB=NIBIB, ES=NIEHS, EY=NEI, GM=NIGMS, HD=NICHD, HG=NHGRI, HL=NHLBI, LM=NLM, MD=NIMHD, MH=NIMH, NR=NINR, NS=NINDS

Overall, the percentage of those additional R01s coming from the same IC ranges from 47 to 75%. For those that do not come from the same IC, the number of ICs contributing substantially ranges from a few to many illustrated below (which depicts the data above displayed as the fraction of the R01s from the different ICs given an R01 from a particular IC).

Mult PI IC Graph

For example, if a PI has one Ro1 from AA (NIAAA), 61% of additional R01s come from AA and 18% come from DA (NIDA), leaving 21% for the remaining ICs. In contrast, if a PI has a grant from GM (NIGMS) or CA (NIH), it takes 4 additional ICs to reach 18% of additional R01s.

Which ICs are linked by having PIs with multiple R01s? I examined the top two contributions of additional R01s for each IC (in addition to the IC itself). In these "top two lists", I joined the pairs of ICs. I used a bold line if the link was bi-direcctional, that is, each PI appeared on the top two list of the other. The results are depicted below:

IC-IC graph-2-rev

 

Overall, the patterns that emerge are as might be anticipated. The bidirectional links are between AA-DA, MH-NS, DK-HL, CA-GM, and CA-AI. Some of the larger ICs are linked to many other ICs, reflecting both their size and their relatively broad missions.

UPDATE

As noted in the comments, some of these connections could be attributed to the size of the ICs. Thus, NCI appeared to be linked to many other ICs, but this could be due to the large number of R01s awarded by NCI rather than by actual content overlap.

To address this, I simulated results assuming that the probabilities for an additional grant coming from a particular IC was proportional to the number of grants that this IC award in this data set. I then compared the simulated results with the actual results. Of course, the number of grants going to the same IC was much higher than would be expected. Since this distorted the other statistics, I set all of these values equal to 0 and re-simulated the data. I (or, more correctly, R) performed 1000 simulations and then calculated mean, standard deviation, and other statistics for these distributions of grant numbers. I then compared these with the actual values observed in the data. The results (presented a log(base 10) of the probability of occurring by chance are presented below:

Analyze_Results_2014

 

These results allow assessment of the strength of the interactions corrected for IC size.

The strongest interactions are between NIDA and NIAAA with probabilities of occurring by change of < 10^-88.

The other strong interactions are:

NIMH and NINDS

NIAMS and NIDCR (which was still detected previously even though these are both relatively small ICs)

NIDA and NIMH

NIDDK and NHLBI

NIGMS and NIAID

NIDCD and NEI (which was not detected previously)

The link between NCI and NIGMS is still the strongest link between NCI and another IC, but it is substantially less pronounced that the other links above.

Thanks for the comments. I think this a much improved analysis and I had an excuse to explore additional R tools.

I am now working on generating a 2-dimensional figure that is more consistent with these connectivities in a more formal way.

18 responses so far

Single vs Multiple R01 Holders by IC

Jun 05 2015 Published by under Uncategorized

On a recent Drugmonkey post on the new NIGMS MIRA Award announcement, a commenter suggested that NIGMS might have more R01 PIs with more than 1 R01. With my new R tools, it was relatively straightforward to check this.

Below is a table with the number of PIs (not counting multiple PIs in this analysis) from each IC who have 1 R01 or more than 1 R01 for fiscal year 2014 (R37s are also included). The abbreviations for the ICs are shown with the IC number. Note that the additional R01s can be from the same or a different IC.

PI_Analysis_Mult_R01_Table

 

As can be seen, NIGMS (GM) is actually slightly below the median (not weighted by the number of PIs) of 0.304 and below all of the other large ICs (CA, AI, HL).

Other queries welcome!

Updated:  I discovered an error in the table that I originally posted. A revised table is included. None of the conclusions were affected.

15 responses so far